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This paper is concerned with computational aspects of a multidimensional population bal-
ance model of a wet granulation process. Wet granulation is a manufacturing method to
form composite particles, granules, from small particles and binders. A detailed numerical
study of a stochastic particle algorithm for the solution of a five-dimensional population
balance model for wet granulation is presented. Each particle consists of two types of solids
(containing pores) and of external and internal liquid (located in the pores). Several trans-
formations of particles are considered, including coalescence, compaction and breakage. A
convergence study is performed with respect to the parameter that determines the number
of numerical particles. Averaged properties of the system are computed. In addition, the
ensemble is subdivided into practically relevant size classes and analysed with respect
to the amount of mass and the particle porosity in each class. These results illustrate the
importance of the multidimensional approach. Finally, the kinetic equation corresponding
to the stochastic model is discussed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation
process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders,
using equipment such as rotating drums, fluidised beds and high-shear mixers [1]. These composites have enhanced han-
dling properties over their raw components, and are used for a variety of products, ranging from fertilizers to drugs and
detergents. In order to yield granules with a high product quality, a good understanding of the process is required, which
may be obtained through modelling of the granulation process. The formation of granules can be described with population
balances models, allowing the tracking of the number of particles with desired properties.

Since the 1960s one-dimensional population balance models, i.e., with one characteristic property, have been used to de-
scribe granulation processes [2,3]. A one-dimensional description of the granules was subsequently found to be insufficient
[4,5], and models with three or more dimensions have been introduced [6–10]. Several approaches have been applied for the
numerical solution of population balance models. These are for instance the method of moments [11], sectional methods
[12–15], and finite element methods [16]. However, the computational effort for the solution of the models with these meth-
ods increases enormously, if the number of dimensions is changed from one to two, three, or even more. Stochastic particle
methods offer an attractive alternative for the solution of multidimensional population balance models and have success-
fully been applied to granulation models [9,10]. Moreover, stochastic algorithms have not only been applied to models
. All rights reserved.
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for particulate processes such as crystallisation [17], nanoparticle synthesis [18–22] and granulation [23,24], but also to
those for chemical reactions [25], liquid–liquid mixing [26,27] and droplet coalescence in clouds [28]. Several studies inves-
tigated the stochastic treatment of aggregation processes for one- and two-dimensional models [29–33]. Despite this wealth
of studies, it remains open how stochastic algorithms would perform for a model with a higher number of dimensions and
additional processes, for instance breakage of particles. In addition, an assessment of the numerical approach with respect to
the numerical errors is important, in particular, when the solutions for different models are computed in order to discrim-
inate one over the other model. Another aspect in model development is the solving of the inverse problem, i.e., the estima-
tion of model parameters using experimental observations. A detailed understanding of the numerical solution of complex,
multivariate models is beneficial, given that surrogate models may be constructed and used for this task.

The purpose of this paper is to present a detailed numerical study of a stochastic particle algorithm for the solution of a
five-dimensional population balance model for wet granulation. In particular, the influence of numerical parameters on the
macroscopic properties of the particle ensemble is investigated.

A description of the stochastic particle model is given in Section 2. Each particle consists of two types of solids (containing
pores) and of external and internal liquid (located in the pores). Several transformations are introduced that correspond to
coalescence, compaction and breakage of particles. Numerical results are presented in Section 3. A convergence study is per-
formed with respect to the parameter which determines the number of particles in the system. Several interesting properties
of the system are computed, like the number of particles per unit volume and the mean particle porosity. In addition, the
ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the par-
ticle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, in Appendix A,
the kinetic equation corresponding to the stochastic model studied in this paper is discussed.
2. Model

The mathematical model is a jump process characterised by the state space, the jump rates and the jump transformations.
Its purpose is to describe the evolution of particles in a high shear granulation process. The particle vector
x ¼ ðso; sr; le; li;pÞ
consists of non-negative internal variables, which are

� original solid volume so,
� reacted solid volume sr,
� external liquid volume le,
� internal liquid volume li and
� pore volume p.

Note that
li 6 p and so þ sr ¼ 0) p ¼ 0: ð1Þ
Several dependent variables are defined. The particle volume is
vðxÞ ¼ so þ sr þ le þ p: ð2Þ
The particle radius is (assuming a spherical shape)
RðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4p
vðxÞ3

r
:

With the assumption that the densities of the liquids and the reacted solid are the same,
qle ¼ qli
¼ qsr

; ð3Þ
the particle mass takes the form
mðxÞ ¼ qso
so þ qle ðsr þ li þ leÞ;
where qso
and qle are input parameters. The porosity is defined as
eðxÞ ¼ p
vðxÞ : ð4Þ
The external surface area is (spherical particle)
aeðxÞ ¼ p1=3ð6vðxÞÞ2=3: ð5Þ
The internal surface area is
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aiðxÞ ¼ Cp2=3 for some C P 62=3p1=3 � 4:8:
The constant C is an input parameter, which has to be fitted. The higher the value of C is, the more tortuous are the pores. We
use the value C = 15, which gave good results in [9].

The initial state of the system is a set of particles of the form
x ¼ ðso;0;0;0;0Þ
made up only of original solid. This set is composed according to a size distribution from experiments. Various processes are
covered by the model:

1. Addition of liquid: Droplets of the form
x ¼ ð0;0; le;0;0Þ
are added to the particle ensemble.
2. Coagulation: Two particles combine to a new particle. In addition to this, compaction takes place, i.e., the particle poros-

ity is reduced.
3. Breakage: A particle splits into two particles.
4. Processes within a particle that do not change the number of particles in the ensemble:

(a) Chemical reaction: Formation of the reaction product sr.
(b) Penetration: Migration of the external liquid le into the pores.

These processes are specified in the following.

2.1. Addition of liquid

Assuming that liquid addition is performed using a nozzle or similar device, two characteristic properties exist in order to
describe the process:

� _V l, the volumetric flow rate of the binder being added to the system, and
� pin(x), the number based normalised droplet size distribution that gives the probability that a droplet being added to the

system is of type x.

Both are input parameters. The mean droplet size is given by
Vdroplet ¼
Z

X
vðxÞpinðxÞdx;
where X = [0,1)5 denotes the type space. The density rate of the ‘‘inflowing” particles is
f inðxÞ ¼
_V l

V reactor

pinðxÞ
Vdroplet

ð6Þ
and the number inflow rate is
Z
X

f inðxÞdx ¼
_V l

V reactor

1
Vdroplet

ð7Þ
with Vreactor being the volume where the particle ensemble is contained in.
In the special case of pin(x) being the delta function at
x ¼ ð0;0;Vdroplet;mono;0; 0Þ;
so that all droplets exhibit the same size, one obtains
Vdroplet ¼ Vdroplet;mono:
2.2. Collisions

The collision rate of particles with the properties x0 and x00 is given by the kernel
Kðx0; x00Þ ¼ nimpeller
bK 0 ð8Þ
with input parameters nimpeller (impeller speed) and bK 0 (rate constant).
The coalescence efficiency eK is calculated based on the Stokes criterion, which is a function of the viscous Stokes number

and the critical Stokes number, with
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eK ðx0; x00Þ ¼ 1; if ecoagðx0; x00Þ ¼ 0;
1; if ecoagðx0; x00Þ > 0 and St�vðx0; x00ÞP Stvðx0; x00Þ;
0; otherwise:

8><>:

The coefficient of restitution is defined as the geometric average of the coefficients of restitution of the single particles x0

and x00,
ecoagðx0; x00Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðx0Þ � eðx00Þ

p
: ð9Þ
A mass-weighted arithmetic average is used for the calculation of the coefficient of restitution of each particle,
eðxÞ ¼
eso qso soþqle ðesr srþeli

liÞ
qso soþqle ðsrþliÞ

; if so þ sr > 0;

0; otherwise ðdropletÞ;

(

where eso ; esr ; eli 2 ½0;1� are input parameters.
The viscous Stokes number is computed as
Stvðx0; x00Þ ¼
~mðx0; x00ÞUcol

3pgeRðx0; x00Þ2 ;

with input parameters Ucol (collision velocity) and g (binder viscosity). The harmonic mass of x0 and x00 is
~mðx0; x00Þ ¼ 2mðx0Þmðx00Þ
mðx0Þ þmðx00Þ :
The harmonic radius computes as
eRðx0; x00Þ ¼ 2Rðx0ÞRðx00Þ
Rðx0Þ þ Rðx00Þ :
The critical Stokes number is defined by
St�vðx0; x00Þ ¼ 1þ 1
ecoagðx0; x00Þ

� �
ln

hðx0; x00Þ
ha

� �

with the input parameter ha (characteristic length scale of surface asperities). The thickness of the binder layer h(x0,x00) is
defined as the combined binder thickness of the particles x0 and x00,
hðx0; x00Þ ¼ hðx0Þ þ hðx00Þ
2

;

with the thickness of the binder layer of a particle with the properties x being calculated by
hðxÞ ¼ 1
2

ffiffiffiffi
6
p

3

r ffiffiffiffiffiffiffiffiffiffi
vðxÞ3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðxÞ � le

3
q� �

:

The Stokes criterion was introduced by Ennis et al. [34] and measures whether the kinetic energy of a particle–particle col-
lision can be dissipated by the viscous binder layer, so that the particles do not rebound. The Stokes number Stv is the ratio of
the inertial to the viscous forces in a collision. The critical Stokes number St�v marks the upper limit of the Stokes numbers for
which colliding particles do not rebound.

The collision event leads to the following outcomes:

� If eK ðx0; x00Þ ¼ 1 , then particles coalesce and are compacted, provided that no droplet is involved, i.e.,
x0; x00 ! Tðx0; x00Þ;
where
Tðx0; x00Þ ¼
Tþðx0; x00Þ; if x0 or x00 is a droplet;bT ðTþðx0; x00ÞÞ; otherwise:

(

� If eK ðx0; x00Þ ¼ 0 , then particles do not coalesce, but are compacted,
x0; x00 ! bT ðx0Þ; bT ðx00Þ:

The coalescence transformation T+ and the compaction transformation bT will be described in the subsections following

below.
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2.2.1. Coalescence transformation
If the particles
x0 ¼ ðs0o; s0r; l
0
e; l
0
i; p
0Þ; x00 ¼ ðs00o; s00r ; l

00
e; l
00
i ;p

00Þ
coalesce, a new particle
x000 ¼ ðs000o ; s000r ; l
000
e ; l
000
i ; p

000Þ ¼: Tþðx0; x00Þ
arises. Its composition is defined in the following.
The volumes of the solid components are calculated as
s000o ¼ s0o þ s00o; s000r ¼ s0r þ s00r :
Due to the coalescence event some external liquid is assumed to become trapped inside the new particle, i.e., the amount of
internal liquid increases. This transferred volume of liquid le?i is computed by
le!iðx0; x00Þ ¼ l0el00e 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðx0Þ � l0e

3
q
ffiffiffiffiffiffiffiffiffiffiffi
vðx0Þ3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
vðx00Þ3

p
0@ 1A2

vuuuut
26664

37775� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðx00Þ � l00e

3
q
ffiffiffiffiffiffiffiffiffiffiffi
vðx0Þ3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
vðx00Þ3

p
0@ 1A2

vuuuut
26664

37775
8>>><>>>:

9>>>=>>>;
1=2

: ð10Þ
The volumes of the liquid components are calculated as
l000e ¼ l0e þ l00e � le!iðx0; x00Þ; l000i ¼ l0i þ l00i þ le!iðx0; x00Þ:
The pore volume p000 of the newly formed particle depends on the composition x0 and x00. If these particles are rather ‘‘hard” it
is assumed that the surface area of the new particle is equal to the combined surface area of the predecessors. In contrast to
this, two ‘‘soft” particles will merge completely, so that their volumes add up to the volume of x000. The ‘‘softness” of the par-
ticles is given by the coefficient of restitution (9). The pore volume is calculated as
p000 ¼ Aðx0; x00Þ3=2

6
ffiffiffiffi
p
p � s000o � s000r � l000e ; ð11Þ
where
Aðx0; x00Þ ¼ ð1� ecoagðx0; x00ÞÞ aeðx0Þ3=2 þ aeðx00Þ3=2
� �2=3

þ ecoagðx0; x00Þðaeðx0Þ þ aeðx00ÞÞ:
Since a + b P (a3/2 + b3/2)2/3, one obtains
Aðx0; x00Þ
3
2

6
ffiffiffiffi
p
p P

aeðx0Þ
3
2

6
ffiffiffiffi
p
p þ aeðx0Þ

3
2

6
ffiffiffiffi
p
p ¼ s0o þ s0r þ l0e þ p0 þ s00o þ s00r þ l00e þ p00 P s000o þ s000r þ l0e þ l00e þ l0i þ l00i ¼ s000o þ s000r þ l000e þ l000i
so that the definition (11) is consistent with the condition p000 P l000i (cf. (1)). Moreover, (11) implies that the external surface
area of the new particle satisfies (cf. (2) and (5))
aeðx000Þ ¼ Aðx0; x00Þ:

2.2.2. Compaction transformation

During the collision event particles undergo compaction,
x! x̂ ¼ ð bso ; bsr ;
ble ;
bli ; p̂Þ ¼: bT ðxÞ;
leading to a reduction of the pore volume. The porosity change is described by (cf. (4))
DeðxÞ ¼
kporredUcol eðxÞ � eminð Þ; if kporredUcol 6 1 and eðxÞP emin;

0; otherwise;

	

with input parameters kporred (rate constant of porosity reduction), Ucol (collision velocity) and emin (minimum porosity, for
which compaction takes place). Note that
DeðxÞ > 0) eðxÞ � DeðxÞP emin:
Two scenarios are considered, depending on the critical porosity for fully saturated pores (li = p),
ecritðxÞ ¼
li

so þ sr þ le þ li
: ð12Þ
Case (i): If
eðxÞ � DeðxÞ > ecritðxÞ; ð13Þ
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then the amount of external liquid remains unchanged. The components of the compacted particle are computed as
bso ¼ so; bsr ¼ sr;
ble ¼ le;

bli ¼ li ð14Þ
and
p̂ ¼ eðxÞ � DeðxÞ
1� eðxÞ þ DeðxÞ ðso þ sr þ leÞ: ð15Þ
It follows from (14) and (15) that
vðx̂Þ ¼ so þ sr þ le þ
eðxÞ � DeðxÞ

1� ½eðxÞ � DeðxÞ� ðso þ sr þ leÞ ¼
1

1� ½eðxÞ � DeðxÞ� ðso þ sr þ leÞ
and
eðx̂Þ ¼ p̂
vðx̂Þ ¼ eðxÞ � DeðxÞ:
Note that the function u
1�u is increasing for u 2 [0,1). Using (12), (13) and (15), one obtains (cf. (1))
p̂ P
ecritðxÞ

1� ecritðxÞ
ðso þ sr þ leÞ ¼ li ¼ bli :
Case (ii): If
eðxÞ � DeðxÞ 6 ecritðxÞ
then internal liquid is squeezed onto the particle surface. The components of the compacted particle are computed as
bso ¼ so; bsr ¼ sr;
ble ¼ le þ li � p̂; bli ¼ p̂ ð16Þ
and
p̂ ¼ ½eðxÞ � DeðxÞ�ðso þ sr þ le þ liÞ: ð17Þ
It follows from (16) and (17) that
vðx̂Þ ¼ so þ sr þ le þ li � p̂þ p̂
and
eðx̂Þ ¼ p̂
vðx̂Þ ¼ eðxÞ � DeðxÞ:
Note that
ecritðx̂Þ ¼
blibso þ bsr þ ble þ bli

¼
bp

so þ sr þ le þ li
¼ eðxÞ � DeðxÞ ¼ eðx̂Þ:
2.3. Breakage

Breakage events are characterised by the breakage frequency and the breakage transformation.

2.3.1. Breakage frequency
We consider a (parent) particle with properties x. The breakage frequency takes the form
gðxÞ ¼ k̂attU
2
imp eðxÞWðxÞ þ vðxÞ½ �vðxÞ; if vðxÞP vparent;min;

0; otherwise

(
ð18Þ
with input parameters k̂att (attrition rate constant) and Uimp (impact velocity, which is allowed to depend on process condi-
tions such as the impeller speed). The quantity vparent,min will be defined in (23). The breakage frequency (18) includes the
functions
vðxÞ ¼ le

vðxÞ ð19Þ
and
WðxÞ ¼ 1�min
sr= so þ sr þ pð Þ

s�r
;1

� �
: ð20Þ
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The function W accounts for the solidification of the particles, with the input parameter s�r (dimensionless critical amount of
reacted solid so that the particle core does not break).

2.3.2. Breakage transformation
The breakage transformation determines which particles are formed when a particle with properties x breaks. In the cur-

rent model, particle breakage yields an ‘‘abraded parent particle” x0 and a ‘‘daughter particle” x00.
The prediction of particle breakage is not fully understood yet [35]. For comminution processes, functions such as the

Rosin–Rammler and Gaudin–Schuhmann distributions with two empirical parameters are widely used to describe measured
particle size distributions. However, it has also been established that there is a lower particle size limit that can be achieved
through breakage for a given energy input [36]. In addition, the daughter size distribution must have an upper limit. This can
be modelled either by truncating an unbounded distribution [37] or by using a bounded distribution as is done in the current
framework, but the consequences of this choice have not been investigated yet.

In order to define the volume of the daughter particle, a random quantity
v fragðx; hÞ ¼ v frag;min þ h½mmaxvðxÞ � v frag;min� ð21Þ
is introduced, where h 2 [0,1] is randomly chosen according to the probability density
fattðhÞ ¼
1

Bða; bÞ h
a�1ð1� hÞb�1
with
Bða; bÞ ¼
Z 1

0
ha�1ð1� hÞb�1dh for some a; b P 1:
The quantity (21) is located on the interval
v frag;min; mmaxvðxÞ

 �

:

It is assumed that
mmaxvðxÞP mmin;maxv frag;min: ð22Þ
The parameter vfrag,min characterises the minimum fragment size, while mmin,max P 1 provides a lower bound for the ratio of
the volumes of the biggest and smallest possible fragments. The input parameter mmax 6 0.5 defines the maximum fraction of
the parent particle that can break off. This quantity characterises whether fragmentation or attrition is more likely in the
system. In granulation two kinds of breakage pattern can be observed, the first one being ‘fragmentation’. As such, the frag-
ments resulting from the breakage with a fragmentation pattern are rather big (something like order of magnitude compared
to parent particle), whereas attrition leaves the parent particle nearly unchanged and fairly small fragments are generated.
Inequality (22) gives a definition of the smallest parent particle that can be broken (cf. (18)),
vparent;min ¼
mmin;max

mmax
v frag;min: ð23Þ
The compositions of the newly formed fragment x00 and the abraded parent particle x0 depend on the composition of the
parent particle x. In the case
p > 0; ð24Þ
we define
s00o ¼ so
v fragðx; hÞ

vðxÞ ; s00r ¼ sr
v fragðx; hÞ

vðxÞ ;

l00e ¼ le
v fragðx; hÞ

vðxÞ ; l00i ¼ li
v fragðx; hÞ

vðxÞ ; p00 ¼ p
v fragðx; hÞ

vðxÞ ;
so that the composition of the daughter particle is the same as for the parent particle and
vðx00Þ ¼ v fragðx; hÞ:
If the parent particle is non-porous, i.e.,
p ¼ 0; ð25Þ
then the particle can either be a ‘‘real” particle with a completely solid core which is covered by external liquid or the particle
can be a droplet (v = le). The composition of the daughter particle x00 is defined as
s00o ¼ 0; s00r ¼ 0; l00e ¼minðv fragðx; hÞ; leÞ; l00i ¼ 0; p00 ¼ 0:
Note that breakage of non-porous particles without external liquid is not allowed (cf. (18)–(20)) so that
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0 < vðx00Þ 6 v fragðx; hÞ:
In both cases (24) and (25), the components of the abraded parent particle are defined as
s0o ¼ so � s00o; s0r ¼ sr � s00r ;

l0e ¼ le � l00e; l0 i ¼ li � l00i ; p0 ¼ p� p00:
2.4. Processes within a particle

Between jump events particles move according to a system of ordinary differential equations
d
dt
ðtÞ ¼ DreacðxðtÞÞ þ DpenðxðtÞÞ;
where the term Dreac describes the chemical reaction in a particle and the term Dpen corresponds to the penetration process.

2.4.1. Chemical reaction
The chemical reaction in a particle is dependent on the rate constants kreac,e and kreac,i as well as on the surface areas ae

and ai. The two contributions are computed as (reaction on external/internal surface)
rreac;eðxÞ ¼
kreac;ea eðxÞ le

leþsr
; if s o > 0 and le > 0;

0; otherwise;

(

rreac;iðxÞ ¼
kreac;iaiðxÞ li

liþsr
; if so > 0 and li > 0;

0; otherwise:

( ð26Þ
With the assumption (3) the derivatives of each particle component are given by
dso

dt
¼ 0;

dsr

dt
¼ rreac;eðxÞ þ rreac;iðxÞ;

dle

dt
¼ �rreac;eðxÞ;

dli

dt
¼ �rreac;iðxÞ;

dp
dt
¼ �rreac;iðxÞ:
2.4.2. Penetration
The penetration rate depends on the rate constant k̂pen and the liquid viscosity g and equates as
rpenðxÞ ¼ k̂peng�1=2le p� lið Þ: ð27Þ
The derivatives in the single components are given by
dso

dt
¼ 0;

dsr

dt
¼ 0;

dle

dt
¼ �rpenðxÞ;

dli
dt
¼ rpenðxÞ;

dp
dt
¼ 0:
3. Numerical studies

Here we perform numerical studies with the Direct Simulation Monte Carlo algorithm based on the model described in
the previous section. A stochastic particle system is introduced,
zðtÞ ¼ xjðtÞ; j ¼ 1; . . . ;nðtÞ
� 

; t P 0: ð28Þ
This system depends on a parameter N that controls the number of numerical particles. The sequence of random processes
(28) approximates (as N ?1) the particle density f(t,x),
1
VN

XnðtÞ
j¼1

dxjðtÞðdxÞ 	 f ðt; xÞdx: ð29Þ
The normalisation parameter VN is such that
nð0Þ
VN
¼
Z

X
f0ðxÞdx;
where f0 is the initial particle density.
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3.1. Algorithmic issues

Given a state z = (x1, . . . ,xn), the waiting time s for the jump process (28) is generated from
Probfs P sg ¼ expð�qtotalðzÞsÞ; s P 0;
with
qtotalðzÞ ¼ qincðzÞ þ qcoagðzÞ þ qbreakageðzÞ:
The waiting time parameter for the addition of liquid is (cf. (7))
qincðzÞ ¼
_V l

V reactor

VN

Vdroplet
: ð30Þ
The waiting time parameter for collisions is (cf. (8))
qcoagðzÞ ¼ bK 0nimpeller
nðn� 1Þ

2VN
:

The waiting time parameter for breakage is (cf. (18))
qbreakageðzÞ ¼
Xn

j¼1

gðxjÞ: ð31Þ
At time s, a jump mechanism is chosen according to the probabilities
qincðzÞ
qtotalðzÞ

;
qcoagðzÞ
qtotalðzÞ

;
qbreakageðzÞ
qtotalðzÞ

;

leading either to the addition of a droplet, to the collision of two particles, or to the breakage of one particle. The indices of
colliding particles are chosen uniformly. The index i of the particle to break is chosen according to the probabilities g(xi)/
qbreakage(z) (cf. (31)).

The number of particles is kept in a prescribed region by applying particle doubling and random reduction. In this study
we use
nð0Þ ¼ 0:75N and nðtÞ 2 ½0:375N;N� 8t P 0: ð32Þ
The Linear Process Deferment Algorithm [38], with a constant volume approach, is employed, where the processes within a
particle are the deferred processes. The deferred processes are updated whenever a particle is involved in a collision or
breakage event. In the present test case this happens about 20 times per second.

The additional error caused by these algorithmic ingredients is not significant in the present setup of the test case, so that
no further details are discussed.

3.2. Confidence intervals

For each of the system properties, such as the mean number of particles per unit volume or the mean particle porosity, we
study the influence of the parameter N on the convergence of the algorithm. Those macroscopic properties of the system are
expressed as random variables n(N)(t) depending on time t. The empirical mean is
gðN;LÞ1 ðtÞ ¼ 1
L

XL

l¼1

nðN;lÞðtÞ
and the empirical variance is
gðN;LÞ2 ðtÞ ¼ 1
L

XL

l¼1

nðN;lÞðtÞ2 � gðN;LÞ1 ðtÞ2;
where L is the number of independent runs of the simulation and n(N,l)(t) denotes the value of n(N)(t) during the run l. Con-
fidence intervals are constructed as
gðN;LÞ1 ðtÞ 
 ap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðN;LÞ2 ðtÞ

L

s
:

These intervals contain the expectation of n(N)(t) with probability p. The value ap is the solution of the equation
p ¼
ffiffiffiffiffiffiffiffiffi
2=p

p Z ap

0
expð�t2=2Þdt ¼ erfðap=

ffiffiffi
2
p
Þ
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and can be obtained from tables for the error function. In our calculation we use ap = 1.64, which corresponds to p ’ 0.9.
The error is measured as
eðN;LÞðtÞ ¼ gðN;LÞ1 ðtÞ � fðtÞ
��� ���:
It contains both the systematic and the statistical error. The function f(t) is an approximation for the true value, which is
obtained from a ‘‘master calculation” with a very large number of particles. An average error is computed as
�eðN; LÞ ¼ 1
I

XI

i¼1

eðN;LÞðtiÞ; ð33Þ
where I is the number of observation points.

3.3. Approximation results

The model provides an estimate for the particle density f (cf. (29)). From this, practically relevant properties of the particle
ensemble and subsets of it can be derived. Ensemble in this context means the population of all entities.

In our calculation the ‘‘true” solution is obtained from a run with N = 524,288 (cf. (32)) and L = 8 repetitions. Otherwise,
the product N � L = 524,288 is kept constant so that the width of the confidence bands is roughly the same for all curves. The
observed order of convergence of the systematic error is 1/N (indicated by the solid lines in the corresponding figures). The
values of the model parameters used in the test case are summarised in Table B.1 in Appendix A.

3.3.1. Ensemble properties
The examination of a batch of (numerical) particles allows for the deduction of various characteristics of the ensemble.

3.3.1.1. Number of particles per unit volume. The number of particles per unit volume, i.e., the zeroth moment
m0ðtÞ ¼
nðtÞ
VN

; ð34Þ
is the simplest property of the particle ensemble. This quantity is governed by the interplay of the different processes, with
inception/inflow and particle breakage leading to an increase, and coalescence leading to a decrease of the number of par-
ticles. Its dependence on the parameters N (cf. (32)) and L (number of repetitions) is shown in Fig. 1, while the error (33) is
displayed in Fig. 2.

3.3.1.2. Volume of particles per unit volume. From the composition of each particle, the individual particle volume (2) can be
computed. The summation over all particles leads to the first moment
m1ðtÞ ¼
1

VN

XnðtÞ
i¼1

vðxiðtÞÞ; ð35Þ
which is the fraction of the control volume (i.e., apparatus) taken up by the particulate matter. The dependence of this quan-
tity on the parameters N and L is shown in Fig. 3. Note that quantity (35) is less than the apparent volume fraction of the
packed particle ensemble due to the interstitial voidage between the particles.
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Fig. 1. Number of particles per unit volume (34).
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3.3.1.3. Mean particle porosity. Apart from solids and liquids, the pore volume of each particle is tracked in the multidimen-
sional model, allowing for the computation of the particle porosity. This property is often of importance for particulate mat-
ter and crucial for the dissolution/disintegration of granules, e.g. pharmaceuticals, fertilizer or detergents. A number
averaged porosity shall be defined by
e0;mðtÞ ¼
1

nðtÞ
XnðtÞ
i¼1

eðxiðtÞÞ: ð36Þ
The dependence of this quantity on the parameters N and L is shown in Fig. 4.

3.3.2. Sieve class properties
For the use of the granules in a specific application, e.g. as detergent, certain characteristics need to be met. A common

classification of the particles is the one by size. This means, the product has to pass a set of screens, and granules being too
small (undersize) or too big (oversize) are removed. In order to mimic such sieving/screening process, the computational
ensemble is split according to the particle sizes into classes (that would result from a screening process). The ‘‘sieves” are
chosen from standard sieve series and have mesh sizes of 150, 300, 600, and 1200 lm, leading to three classes (150 and
1200 lm happened to encompass the diameters of all existing particles).

3.3.2.1. Mass fraction in sieve classes. For each of the sieve classes we define the mass fraction of the particular sieve cut in the
particle ensemble,
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Fig. 3. Volume of particles per unit volume (35).
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q3;kðllow;k; lup;kÞ ¼
mkðllow;k; lup;kÞ

mtotal
; ð37Þ
where k is the number of the class, llow,k and lup,k are the lower and upper boundary of the class, mk is the mass of the particles
in the class and mtotal is the mass of the entire ensemble. The dependence of the quantities (37) on the parameters N (cf. (32))
and L (number of repetitions) is shown in Figs. 5 (150–300 lm), 7 (300–600 lm) and Fig. 9 (600–1200 lm). The correspond-
ing errors (33) are displayed in Figs. 6, 8 and 10.
3.3.2.2. Mean particle porosity in sieve classes. Once the granules are classified, it is not only of interest how much material
belongs to each size class, but also which properties the particles in each class have. One of them is the porosity of the par-
ticles, and distinctive differences can be observed for the particles of the different size classes. The dependence of the quan-
tities (36) in each class on the parameters N and L is shown in Figs. 11, 13 and 15. The corresponding errors (33) are displayed
in Figs. 12, 14 and 16.
3.4. Efficiency issues

The main focus of the numerical experiments was studying the convergence of the measured quantities with respect to
the parameter N (cf. (32)). Confidence bands turned out to be sufficiently narrow to illustrate this behaviour and even to indi-
cate the order of convergence. However, the calculations were rather time-consuming so that increasing the efficiency is a
challenging task. In the context of stochastic particle methods an appropriate tool is variance reduction, i.e., modifying the
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Fig. 5. Mass fraction (37) of sieve class 150–300 lm.



101 102 103 104 105

N [-]

0.001

0.010

0.100

e 
[-]

Fig. 6. Error in quantity (37) for sieve class 150–300 lm as function of N.

0 50 100 150 200 250 300
time [s]

0.0

0.2

0.4

0.6

0.8

q 3 (3
00

 - 
60

0 
μm

) [
-]

N64, L8192
N128, L4096
N512, L1024
N2048, L256
"True" solution

Fig. 7. Mass fraction (37) of sieve class 300–600 lm.

101 102 103 104 105

N [-]

0.001

0.010

0.100

e 
[-]

Fig. 8. Error in quantity (37) for sieve class 300–600 lm as function of N.

7684 A. Braumann et al. / Journal of Computational Physics 229 (2010) 7672–7691



0 50 100 150 200 250 300
time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

q 3 (6
00

 - 
12

00
 μ

m
) [

-]

N64, L8192
N128, L4096
N2048, L256
"True" solution

Fig. 9. Mass fraction (37) of sieve class 600–1200 lm.

101 102 103 104 105

N [-]

0.0001

0.0010

0.0100

e 
[-]

Fig. 10. Error in quantity (37) for sieve class 600–1200 lm as function of N.

0 50 100 150 200 250 300
time [s]

0.0

0.1

0.2

0.3

0.4

ε 0,
m

 (1
50

 - 
30

0 
μm

) [
-]

N64, L8192
N256, L2048
N1024, L512
"True" solution

Fig. 11. Number averaged porosity (36) in sieve class 150–300 lm.

A. Braumann et al. / Journal of Computational Physics 229 (2010) 7672–7691 7685



101 102 103 104 105

N [-]

0.0001

0.0010

0.0100

e 
[-]

Fig. 12. Error in quantity (36) for sieve class 150–300 lm as function of N.

0 50 100 150 200 250 300
time [s]

0.25

0.30

0.35

0.40

0.45

ε 0,
m

 (3
00

 - 
60

0 
μm

) [
-]

N64, L8192
N128, L4096
N256, L2048
N512, L1024
"True" solution

Fig. 13. Number averaged porosity (36) in sieve class 300–600 lm.

101 102 103 104 105

N [-]

0.001

0.010

0.100

e 
[-]

Fig. 14. Error in quantity (36) for sieve class 300–600 lm as function of N.

7686 A. Braumann et al. / Journal of Computational Physics 229 (2010) 7672–7691



0 50 100 150 200 250 300
time [s]

0.45

0.50

0.55

0.60

ε 0,
m

 (6
00

 - 
12

00
 μ

m
) [

-]

N64, L8192
N128, L4096
N256, L2048
"True" solution

Fig. 15. Number averaged porosity (36) in sieve class 600–1200 lm.

101 102 103 104 105

N [-]

0.001

0.010

0.100

e 
[-]

Fig. 16. Error in quantity (36) for sieve class 600–1200 lm as function of N.

0 50 100 150 200 250 300
time [s]

5.0×10-12

1.0×10-11

1.5×10-11

2.0×10-11

2.5×10-11

3.0×10-11

3.5×10-11

m
1/m

0 [m
3 ]

N8192, L64, deterministic
N8192, L64, stochastic

Fig. 17. Mean volume (38) for deterministic and stochastic liquid addition.

A. Braumann et al. / Journal of Computational Physics 229 (2010) 7672–7691 7687



7688 A. Braumann et al. / Journal of Computational Physics 229 (2010) 7672–7691
algorithm in such a way that the mean quantities are similar, but the stochastic fluctuations are smaller. This allows to get
the same approximations by producing fewer trajectories of the particle ensemble. We have not really addressed the vari-
ance reduction problem so far, but the following observations should be mentioned in this context.
3.4.1. Stochastic versus deterministic liquid addition
The addition of droplets to the particle ensemble is performed as a Markov jump process (cf. Section 3.1). Alternatively,

the droplets can be added after a predetermined time step 1/qinc(z) (cf. (30)), which is a function of the process conditions
(mean droplet size, liquid flow rate) and of the numerical parameter N.

With this deterministic droplet addition, it has been observed that the fluctuations in the measured quantities are re-
duced compared to the case when the droplets are added in a stochastic manner. For example, the plot of the mean
volume
�vðtÞ ¼ m1ðtÞ
m0ðtÞ

¼ 1
nðtÞ

XnðtÞ
i¼1

vðxiðtÞÞ ð38Þ
in Fig. 17 shows that the model response is approximately the same. However, the uncertainty is on average about three
times higher for stochastic liquid addition compared to the deterministic version. The runtimes for both simulations were
roughly the same (about 43,000 s ’ 11.5 h on AMD Opteron™ Processor 252, 2.6 GHz).
4. Conclusions

A numerical study of the solution of a multidimensional population balance model for wet granulation with a stochastic
algorithm has been performed. The stochastic particle model was described in detail, with each particle consisting of two
kinds of solid, two kinds of liquid and pores. Various transformations are part of the model, for instance coalescence, com-
paction and breakage of the particles. Due to the complexity of the model the weak form of the kinetic equation which cor-
responds to the stochastic process has been stated. A convergence study of the stochastic algorithm was performed with
respect to the number of numerical particles.

Fast convergence of order 1/N was achieved for properties of the whole ensemble, such as the number of particles and the
average particle porosity. For example, with 2000 numerical particles the error in the average particle porosity was less than
1%.

In order to mimic a granules production, the numerical particle ensemble was divided into practically relevant size clas-
ses. The mass fraction and the particle porosity of these size classes as function of the number of numerical particles were
studied. The order of the convergence remained the same, however larger number of numerical particles are required to
achieve small errors.

Finally, a stochastic and a deterministic model of liquid addition were studied. The deterministic addition of droplets
proofed to reduce the fluctuations in the observed quantities.

For the first time a relationship between numerical error and approximation parameter for a complex multivariate
population balance has been presented. Thus the current study serves as a benchmark for future algorithm improve-
ments and new possibly deterministic algorithms. The information is also useful to construct surrogate models which
are needed to solve the inverse problem, i.e., estimate the parameters in the model for a given set of experimental
observations.
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Appendix A. The kinetic equation

Here we introduce the kinetic equation satisfied by the particle density f(t,x). This equation might be of interest for future
analytical studies of the model, or for deriving alternative numerical procedures.

Due to the complexity of the stochastic process considered in this paper, it is not possible to provide a kinetic equation for
the particle density in the common strong form. Instead, a weak form of the equation is given, where the solution is inte-
grated with respect to appropriate test functions. Nonlinear kinetic equations with an inflow term and rather general inter-
actions were studied in [39, Theorem 2.3]. A particular nonlinear kinetic equation with a gradient term was considered in
[40, Section 2.2.1]. According to these results, the temporal evolution of the particle density f(x, t) for a batch process with
no outflow is characterised by the equation
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d
dt

Z
X
uðxÞf ðt; xÞdx ¼

Z
X
ðDðxÞ;rxÞuðxÞ½ �f ðt; xÞdxþ

Z
X
uðxÞf inðxÞdxþ

Z
X

Z
E
½hu; ni �uðxÞ�q1ðx;dnÞ

� �
f ðt; xÞdx

þ
Z

X

Z
X

Z
E
½hu; ni �uðxÞ �uðyÞ�q2ðx; y;dnÞ

� �
f ðt; xÞf ðt; yÞdxdy;
where the test functions u should be differentiable and have compact support. To keep terms short and the structure of the
equation transparent, we use kernels q1, q2 and the notations
hu; ni ¼
Xk

i¼1

uðniÞ; n 2 E :¼ X [ X2:
The kernel q1 describes the jumps involving one particle (e.g., fragmentation), while the kernel q2 determines the binary
interactions (e.g., collision).
Table B.1
Values of model parameters.

Parameter Unit Value

Starting material
Solid particles
so m3 8.78 � 10�12

qso
kg/m3 2509

Liquid droplets

Vdroplet = le m3 6.54 � 10�11

gl Pa s 23 � 10�3

qle
kg/m3 1025

Mixer-granulator operating parameters
_V l m3/s 1.084 � 10�6

nimpeller s�1 3
Ucol m/s 0.13
Uimp m/s 1.19

Breakage

k̂att
s m�5 8.0 � 1010

s�r – 1.0 � 1020

a – 5.0
b – 2.0
vfrag,min m3 4.1888 � 10�12

mmax – 0.5
mmin,max – 1.1

Chemical reaction
C – 15
kreac,e m/s 1.0 � 10�8

kreac,i m/s 1.0 � 10�8

Coalescence
eso – 1
esr – 1
eli – 0
ha m 1.0 � 10�6bK 0

m3 1.0 � 10�9

Compaction
kporred s/m 0.4
emin – 0.25

Penetration

k̂pen
kg1/2 s�3/2 m�7/2 1.0 � 1010
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For our particular model, the function fin is given in (6) and (cf. (26) and (27))
DðxÞ ¼

0
rreac;eðxÞ þ rreac;iðxÞ
�rreac;eðxÞ � rpenðxÞ
�rreac;iðxÞ þ rpenðxÞ

�rreac;iðxÞ

0BBBBBB@

1CCCCCCA:
Moreover, one obtains (see Section 2.3)
Z
E
½hu; ni �uðxÞ�q1ðx;dnÞ ¼ gðxÞ

Z 1

0
fattðhÞ uðx0ðx; hÞÞ þuðx00ðx; hÞÞ �uðxÞ½ �dh
and (see Section 2.2)
Z
E
½hu;ni�uðxÞ�uðyÞ�q2ðx;y;dnÞ ¼ 1

2
nimpeller

bK 0� uðTðx;yÞÞeK ðx;yÞþ ½uðbT ðxÞÞþuðbT ðyÞÞ�ð1� eK ðx;yÞÞ�uðxÞ�uðyÞ
n o

:

Appendix B. Values of model parameters in test case

See Table B.1.
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